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BLOCKAGE CORRECTIONS FOR THREE-DIMENSIONAL-FLOW CLOSED-THROAT WIND
TUNNELS, WITH CONSIDERATION OF THE EFFECT OF COMPRESSIBILITY

By Joex G. HEeRrIOT

SUMMARY

Theoretical blockage corrections are presented for a body of
revolution and for a three-dimensional unswept wing in a cir-
cular or rectangular wind tunnel. The theory takes account of
the effects of the wake and of the compressibility of the fluid,
and 18 based on the assumption that the dimensions of the model

are small in comparison with those of the tunnel throat. For--

mulas are given for correcting a number of the quantities, such
as dynamic pressure and lfach number, measured in wind-
tunnel tests. The report presents @ summary and unification
of the existing literature on the subject.

INTRODUCTION

When a model is placed in & closed-throat wind tunnel
there is an effective constriction or blockage of the flow at
the throat of the tunnel. The effect of this blockage is to
increase the velocity of the fluid flowing past the model;
if the model is not too large relative to the tunnel throat, this
velogity increment is approximately the same at all points
of the model so that the model is effectively working in a
uniform stream of fluid the velocity of which is, however,
greater than the free-stream velocity observed at some
distance upstream of the model. It is therefore necessary
to correct the observed velocity, dynamic pressure, Msch
number, and other measured quantities for the effect of
this constriction. This correction is frequently called the
correction for “solid blockage.” In addition to this solid-
blockage correction, a correction for ‘““wake blockage” is also
necessary if the true dynamic pressure and Mach number at
the model are to be determined. This wake blockage
arises becduse the fluid is slowed down in the wake and con-
sequently must be speeded up outside the wake. A further
effect of the wake is to produce a pressure gradient which
must be considered in correcting the drag coefficient.

Formulas for the solid-blockage correction for a model
mounted in a two-dimensional-flow wind tunnel are given in
references 1, 2, 3, and 4. The first-order effects of the com-
pressibility of the fluid on these corrections are given in
reference 5, as well as in references 3 and 4. References
2, 3, and 4 consider also the wake-blockage correction, and
reference 8 also considers the drag correction due to the
pressure gradient caused by the wake. The formulas given
in reference 3 for the solid- and wake-blockage corrections
will usually be found most convenient whenever the engineer
is confronted by a practical problem of determining the
corrections for any configuration met in his experimental
work.

The solid-blockage correction for a model mounted in a
three-dimensional-flow wind tunnel has been given in a
number of different forms by different authors. Not only
do different authors give the correction for the same con-
figuration in different forms but no one author gives formulas
which are applicable to both fuselages and wings in tunnels
of various shapes; for this reason, the engineer confronted
with a correction problem may have to refer to several reports
to get the complete solution of his problem. Mloreover the
modifications of the formulas for the first-order effects of
fluid compressibility are given incorrectly in some cases.
References 1 and 2 give a formula for the solid-blockage
correction for a body of revolution in & circular or rectangular
tunnel for the case of incompressible flow. In references 5
and 6 the effect of the compressibility of the fluid on this
correction is discussed, but the result given is ineorrect.
Reference 4 gives a formula for the solid-blockage correction
for a body of revolution and for a three-dimensional wing in
a 7- by 10-foot wind tunnel. The modification for com-
pressibility is correct for the wing but wrong for the body
of revolution. Reference 7 gives a formula for the solid-
blockage correction for a body of revolution in a circular
tunnel, correctly taking account of the effect of the com-
pressibility of the fluid. References 8, 9, and 10 give a
formula for the solid-blockage correction for any body in a
circular wind tunnel together with the appropriate constants
for a body of revolution and for a rectangular wing having
various span-to-diameter ratios; the modification of this
formula to take account of compressibility is correctly given.

It is clear that no one report gives all the necessary
formulas together with the appropriate constants and com-
pressibility modifications to enable the engineer to calculate
the solid-blockage correction for any case with which he
may be confronted. Moreover, when the results of two or
more reports overlap, the forms are frequently different so
that it is not obvious whether the results are in agreement.
It is the purpose of the present report to summarize and
extend the results of the previously mentioned reports.
Formulas are given for the calculation of the solid-blockage
correction for a body of revolution or a three-dimensional
unswept wing in a circular or rectangular tunnel. These
formulas contain two constants, one depending on the shape
of the body and the other on the shape of the tunnel and
the ratio of wing span to tunmnel breadth. (This ratio may
be taken to be zero for a body of revolution.) Values of the
first constant for various bodies of revolution and for a
number of frequently encountered wing-profile sections are
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given. Values of the second constant for a circular tunnel
and for rectangular tunnels of a number of commonly en-
countered breadth-to-height ratios are given for various
wing-span-to-tunnel-breadth ratios. Some of these values
have been taken from the previously mentioned reports;
whereas others appear for the first time in the present report.
The discussion is limited to bodies centrally located in the
wind tunnel.

The wake-blockage correction for a model moupted in a
three-dimensional-flow tunnel is given in references 4, 8, 9,
and 10. For the case of incompressible flow the formulas
are in agreement, but the modification to take account of
compressibility given in reference 4 differs from that given
in references 8, 9, and 10. This matter is discussed in the
present report. In reference 11 the corrections for the
pressure gradient due to the wake are given with the correct
compressibility factors.

All the final correction formulas together with directions

for their use are given in the final section entitled *Conclud-

ing Remarks.” Mathematical symbols are defined as intro-
duced in the text. For reference, a list of the more important
symbols and their definitions is given in appendix B.

SOLID BLOCKAGE IN INCOMPRESSIBLE FLOW

a small angle of attack it has been shown that the effects of

camber and thickness may be considered independently. In
treating the problem of wall interference, it is again con-
venient to consider the thickness and camber effects sep-
arately. The camber effect, as pointed out in reference. 3,
contributes nothing to the blockage correction. Conse-

quently it suffices to determine the blockage. correcmon for .

symmetrical bodies at zero angle of attack. This means
that for wings it is necessary to consider only the base profile
of the airfoil, the base profile being defined as the profile the
airfoil would have if the camber were removed and the re-
sulting symmetrical airfoil placed at zero. angle of attack;
bodies of revolution need be considered only at zero angle of

attack.
RECTANGULAR TUNNEL

Three-dimensional wing.—The blockage correction for a
three-dimensional wing in a rectangular tunnel is considered
in reference 4. Numerical valyes are given only for a wing
of 6-foot span in a 7- by 10-foot wind tunnel. The method
may, however, be applied to any rectangular tunnel and any
span-to-breadth ratio. . _

Consider a rect,angular tunnel of hexght. H and breadth B.
Suppose that the wing span 2s is in the B-direction so that
2s/B is the span-to-breadth ratio. As in reference 4, let

the wing be represented by a series of finite lines of sources
(See fig. 1.) The strengths of these sources.
and sinks are assumed to depend on the airfoil proﬁle and

and sinks.

the determination of these strengths, which is a two-
dimensional problem, is explained presently. If each line
retains the same strength from one end to the other, the
wing section cannot be exactly constant.
down at the extreme tip and the plan form will not be
exactly rectangular, but neither of these features is such as
to detract from its usefulness for the present purpose, which
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F1oUGRE L.—~Tmage system for three-dimengional wing in rectangular tunncl,

is to represent an actual wing sufficiently well to enable a
calculation to be made of the velocity along, the {unnel
axis “induced” by images of the wing. It is this velocity
induced by the images which represents the effect of the
tunnel walls on the velocity at the model, and which is the
solid-blockage correction.

Consider the image line source C'D of sirength @ per unit
length. The velocity potential of a three-dimensional
source of strength @éy (volume per unit time) is —Qsy/4xr.
It follows that the component velocity along the tunmel
center line induced at A by the source element Qéy is

_ Qg
ey %y

where ¢ and r are defined in figure 1. Putting r*=

(mB—y)?*+m2H?*¢* and integrating from —s Lo g_gives
At Qg [ mB+s

T4 (PHE L ) | VI gk (mB s

mB—s : ] (1)
VnH? 4 g* -+ (mB—s)? : :

for the single line source. CD. Now CD is one image of one
finite line source used to represent the wing in the tunnel,
In order to find the veiééiiy induced by all the images of this
particular line source, it is necessary to add the results
obtained from cquatmn (1) by giving m and n all positive
and negative integral values except m=n=0. Thus for a
single line source.

mB+s

_Qg ,-
g 2 HE ['n’fi’+g’4-(m3~i~s)’
me_s_ :l @)
Vil HP 4 g* - (mB—s)?
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where the prime denotes that the term m=n=0 is to be
omitted from the summation. Equsation (2) may be re-
written

where
B —, 1
25 2 T (g/EY
|: m-+sfB _
VT Gy (T SIBYBA)
m—s/B :I @)
v'n*+-(g/H)*+(m —s/BXB[HY

It is convenient to define )

g s B
('3 .H’B,H

i)

3/2

(gsB

75T )

-2 (‘FH

so that
s (BH)M’“ T(H

Now ¢ and = depend only very slightly on g/H and so it
usually suffices to take g/H=0 in the evaluation of these
quantities. Any wing profile can be represented by a suitable
distribution of sources and sinks along the chord. It follows
that the total induced velocity due to the wing images is
obtained by summing over this distribution and is approxi-
mately

el O 5

It may be noted here that setting g/H=0 in the evaluation
of ¢ and 7 is equivalent to representing the wing by a line
doublet of strength =@g (analogous to references 1 and 2)
instead of by a distribution of sources and sinks.

The quantity ZQg of equation (5) can be determined
approximately from the wing profile and this determination
is a two-dimensional problem. From reference 2, but with
the notation of reference 3, there is obtained

AU = (5)

=Qg =§ Ae?ll’ (6)

where
¢ airfoil chord

I apparent free-stream velocity at airfoil as determined
from measurements taken at a point far ahead of
model

A g factor dependent on shape of base profile

Substitution of equation (6) into equation (5) yields

AU 2s 2,
U” T (BHYE 16 ”( ' B H
2set x¥/2 A s B
=16\ B HE @)
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where

t maximum thickness of airfoil

C cross sectional area of tunnel

If 7" denotes the volume of the wing, then V'=2sctx; where
k<1 depends on the shape of the base profile. ‘Equation (7)
may be rewritten

Tr 7
or
AUY Kor2set B
B e ©
where S
=T (O, %, % (10)
% A1
=76 e -
A
=716 7c (12) -

It is clear that = depends only on the tunuel shape and the -

wing-span-to-tunnel-breadth ratio; whereas X;, K, depend
only on the shape of the base profile.

The factor A can be determined for any base profile from
the relation (references 2 and 3)

_16

J1

J (13)

Y JT=P yT+@yaayd (£)

where

Ui ordinate of base profile at chordwise station x

dy./dx slope of surface of base profile at # -

P base-profile pressure coefficient at z in an incompres-
sible flow

YValues of A for a number of base profiles are glven in refer—

ence 3. Thus the value of K; can be calculated from equa-

tion (12). The value of ¥ is immediately found from the

area of the base profile which may be calculated, for example,

by a numerical integration from the ordinates of the base

profile.

from equation (11).

mation of the infinite series in equation (3).

of this series is explained in Appendix A.

Values of = for rectangular tunnels of various breadth-to-
height ratios and for various wing-span-to-tunnel-breadth
ratios are given in table I and figure 2. Values of K and K
for various base profiles are given in tables II and III. The
choice between the two formulas (8) and (@) is entirely a
matter of convenience and should be decided in the light of
the available data.

Body of revolution.—The blockage ¢orrection for a body
of revolution in a rectangular tunnel is copsidered in refer-
ences 1, 2, and 4. In reference 4 numerical values are given
for some average streamline body of revolution in a 7- by
10-foot wind tunnel; whereas in references 1 and 2 numerical
values are given for prolate spheroids and Rankine Ovoids
in square and duplex (breadth equal to twice the height)
wind tunnels. Either the method of reference 4 in which

The evaluation of r requires the sum-
The summation

the body of revolution is represented by a suitable distribu-

tion of sources and sinks along its chord or the method of

As soon as «; is known, K can then be calculated ___



774

TABLE I—VALUES OF 7 FOR VARIOUS TUNNEL SHAPES
AND CONFIGURATIONS

~~ - .
\ 3-dimensionsl wing with span-to-breadth ratio
Body of N
™~ en | s lzm | 2 2
jon s

Tunnet shape F=0 |F=03 E-o.so F=078 | 5=1.00

Cireular-. .o oeeeme 0.797 0,797 0.812 0.828 0.858 | _.__.

8qUere. - e icmam e e .812 .812 1 .818 .836 874 0. 951

Bf{H=10f7 .863 863 . 864 .868 .884 .818

BIH=T}4 946 . 946 4L . 930 923 987

Bil=2 1.028 1.028 1,017 900 | . 967 . 962

Rectangular.._} B/H=7/2 . L.729 1.720 1.630 1.436 1.204 1,160

B{H=2(7 1.729 1.729 1.783 1,896 2.196 2. 665

BIH=1/2 1028 | 1,028 | ... e b ] L34

BfH =610 .22 922 .932 977 1.063 1.230

BIH=7110 .863 863 | oo e | m—— 1.110

TABLE IL—VALUES OF K; FOR VARIOUS BASE PROFILES

\ Conven- NACA low-drag sections
Joukow-| tional
\ Ellipse| Sﬁl N%”OA .
section | sections
I6-0XX | 64-0XX | 65-0XX | 66-0XX
Z=0.XX XX b
0.08 0,938 |occmamen 0.941 0.038 0. 962 0. 965 0. 987
09 .9 0. 991 972 . 962 961 967 984
12 .8 1,016 1,008 997 987 . 98¢ 1. 006
15 1.019 } 1.045 1,035 1,028 1.019 1.020 1.032
1046 ] 1.068 | T.oa3 | Loe2 | L 1051 | 1.057
21 1.072 [ 1,083 1,000 1.090 1.073 1.07 1.079
25 1108 b 1.128 1.128
30 1,152 y
35 1196 [ ... j— ——
50 1.32¢ B
1,00 L72 L

NACA low-drag sections
Ran- Joukow-| tional :
kine | Ellipse | skisec- | NACA .
Oval tion 1 secilns | 160X X | 64-0XX | 65-0XX | 66-0XX
0.06 | . Q737 | oemn 0.644 | 0.690 | 0.615 | 0.632 | 0.679
.09 0.913 | .758 0.580 . 865 .708 . 611 +630 .873
12 9 . 780 616 687 734 624 641 684
15 9351 .800 633 708 756 640 657
18 .822 .652 781 654 673 712
21 o061} 842 .670 746 802 6
979 | .870 .692 m 830 678 697 732
30 10021 .905 1. S G— JSINCAGR [ JREI,
36 L0431 940 D768 | e [ aeeem U I .
50 1.044 86§ b T | —
100 1302} L3602 | ool | eeeee | eeee —— SIS, |

references 1 and 2 in which the body is represented by a
doublet of suitable strength at its center may be used to
obtain results for any streamline body of revolution in any
rectangular tunnel. Since the method of reference 4 was

used for the three-dimensional wing, it is instruective to use .

the doublet method of references 1 and 2 for the body of
revolution case, although both methods give the same results.
Consider a body of revolution of maximum thickness ¢ and
length ¢ centrally located in a rectangular tunnel of breadth
B and height H. As in reference 2 the body may be repre-
sented by a doublet of strength ¢ given by the equation
u=% AU (14)

where X is a constant depending only on the shape and fine-
ness ratio of the body. The velocity induced at the model

by the tunnel walls is the same as that induced by a doubly
infinite array of images of the doublet and is given by

’ [t ’ 1 )
AU 41'_2 WP m By

(15)
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Rectangular, funnel BIH=%1, | 41"
‘Square funnel
. ) ‘Clr'cubr furnel
.80 - —4
" ~ir for body of revolution
same as for £s/B=Q
- i (E
=z 4 7 8 10
2s/B

(a) Varlation of » with ratio of wing span to tunnel breadth, 28/ B, fur various tunncl shajcs.

FIGURE 2.—-Values of r for various tunnel shapes and configurations,

Lo+ - &/
R4y
- ,4 z/é
Wing, 2s/B =10+ %
. ~ - Z/Z_ _
— L ; s -
T .90 M/ﬂ’!)q, 213/3 = 75‘ /{/V/’ 3 R N f—
Wing, 2sfB :jg —
L3~ Wing, 28/B=.25 | | T
=t == | -Body of revolution (b-
.80 _ s )
L L2 .4 L& L8 20

B/H

(b) Variation of » with ratio of rectangular tunnel breadth to height, B/IF, fur a bedy of
revolution and for wings of various span-to-tunnel-breadth ratios,

Fioure 2.—~Concluded,

the summation being taken over all positive and negative
integral values of m and » except m=n=0. If g/H=0
equation (3) may be rewritten

, 1 (m~+8/B)Frnn—(m—8/B) Epy
(O’B 5= FoiFn ]
=3V 2m
T Emnan [(m+s/-B)P‘mu+<m_3/B)Eml]

o)

where the quantities E,, and Fy,, which are introduced for
convenience, are defined by the equations

Emn = [n2+ (m + 8/3)2(3/3)2
Fun=n*+(m—s/B*B/H)*

It follows that

B , 1 } :
(00 )~ s 0D

Substitution of equation (17) into equation (15) yields

s
yym s (0: 0, g)

AU =
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If i is replaced by its value from equation (14) and equation
(4) is used, there is obtained

AU o a8 B\_ett &2\ (¢ B
L_,, —? (BH):”Z T (Or 07 H)—0312—S— Py T (O; 0) E—') (18)

If 77 denotes the volume of the body of revolution, then
V'=kset* where ;< /4 depends on the shape of the meridian
section of the body. (For a right circular cylinder whose
meridian section is clearly a rectangle xe==/4.) Equation
(18) may be rewritten

AU EarV
= (19)
or
AILTI K4_Tct2
T ="tan (20)
where
B
r=1 (0,0, ) (21)
N1
K=" "=
3 ] ¢ ks (.22)
LN
IQ—-S— Y (23)
TABLE IV.—VALUES OF K; FOR VARIOUS BODIES OF
REVOLUTION
N\ Sym-
y mex | k| o
; ipherota| Gveld| i | i | soureer | mamn | bady of
r body | sink 14
body.
0.08 o000 | o013 [ 0802 | cocce | oo | o}
10 . 023 909 I R S—— ——
12 g0 | ea2 | e | T Rl S
14 a7 | el gt [ D} T I S
16 je2t [ g9 g | DD -
18 g | lesr | tess | T o903 | o532 | 095
20 . . 964 948 | L oo | oemm b e
24 . 954 979 864 | . ——— —— —
30 os0 | tooo | . | oaed | T R S
40 1025 | —-o-- —— — e b mm——— ——
i 73 S S U S R T ——
1.00 L3 | OO Ty TV p—

TABLE V.—VALUES OF K, FOR VARIOUS BODIES OF

REVOLUTION
Sym-
| Foms | &%
Prolate | Rankine| NACA | NAC4 [ IDann = [
£ spheroid| Ovoid | 111 133" | SOgrce- | mann | body of
c body sink | enece 14
body
.08 0.472 | 0.870 | 0.405
10 474 . 668 409
12 47| . 413
.14 450 662 AT
16 48 .659 a2 [
.18 .488 | .63 T S 0.417 | 0.414 | 0.436
20 ~401 .650 .433
2% -500 -640 445
30 514 624 0,462
40 .57 | .e07
.50 .562 .609
1.00 .69 .6%6

It should be noted that = for the case of the body of revo-
lution is the same as for the limiting case of a wing when the
span approaches zero. As pointed out in reference 2, X may
be calculated for any body of revolution whose pressure dis-
tribution is known. The necessary formuls is

s e () o

775

where

y radius of body at chordwise station %

dy/dx slope of meridian section at x

P pressure coefficient at x in inecompressible flow

Values of : for prolate spheroids and Rankine Ovoids are
given in references 1 and 2. As soon as M is known for a
body, K. can be calculated at once from equation (23). The
value of x; may be found from the volume of the body of
revolution which may be calculated for example by & numer-

NACA /if; #/c=0.20

Prolote spheroid; tfc= 0.20

Rankine ovoid; tfe =020

NACA 133-30; tfe =0.30

NACA II1; €/c=0.18

Fuhrimann source-sink bedy; tfe =0.18

Symmétric Fuhrmann source-sink body; tfe =0.18

(3,6,-/,0) Bodly of reference [4; %/e =0.18

FicUrE 3.—Sample bodies of revolution.
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ical integra t,ion, and Kj; can be calculated from equation (22)
as soon as k; is known.

Values of 7 for recta.ngular tunnels of various breadth-to-
height ratios are given in table I and figure 2. Values of
K; and K, for various bodies of revolution are given in

tables IV and V. Some of these bodies are drawn in figure

3. Unfortunately these tables are rather incomplete and
moreover fuselage shapes used in practice are extremely
varied. However, in table IV it is observed that the values
of K3 do not depend very strongly on the shape of the body,
although they do depend on the thickness ratio. For this
reason it appears that for most fuselages it will be sufficiently
accurate to use the values of K gwen for the NACA 111
bodies. As the values of K, gn’en in table V are more de-
pendent on the body shape, it is recommended that equation
(19) and table IV be used in preference to equation (20) and
table V whenever possible.

CIRCULAR TUNNEL

Body of revolution.—It is convenient to consider the case~

of a body of revolution before considering the case of the
three-dimensional wing because more attention has. been
given to the former by other authors. _ (See references 1, 2,
7,8, 9, and 10.) It will now be shown that the blockage
correction is again given by equatlons (19) and (20) where
r has a'value appropriate to a circular tunnel. Since K; and
K, depend on the model and not on the tunnel, they are
still given by equations (22) and (23).

The most convenient starting point is the formula of

references 1 and 2, namely, _
4 B 3/3
AU _ o\ <%—”) (25)

S/l

where S, is the maximum cross-sectional area of the model.
It is only necessary to note that

S =rt4
V= I\Tg(,'_tz
It follows at once that —
AU 732 3 A 732 ef?
TN g w5 om (29

Substitution from equations (22) and (23) reduces this to
equations (19) and (20), respectively. It should be noted
that 7 of references 1 and 2 is identical with 7 of the present
report.

The value of 7 is given in table I and figure 2. Values of
K3 and K, are given in tables IV and V. Again equation
(19) is preferable to equation (20).

The result of reference 7 fails to take into consxderatmn_

the body shape and so it is not very useful except for less
exact calculations,. The result of references 8, 9, and 10 is
presented in a different form, namely,

AU’ V

U, —).V'I'V .Bs (27)

where

My factor depending on model shape

7y factor depending on tunnel shape

¥ volume of model

B diameter of wind tunnel

It is of interest to show that equations (19) and (20} can he
deduced also from equation (27) showing the latier to be

equivalent to equation (25). From reference 8, there is
obtained
T 8
A V——-Z = A
4
Ty=—7
ko

Since also C=xDB%4 cquation (27) yields at once

AU (7 8 x)(g )V w1\ Mot
RZARVE AT g ) T g N

This is the same as equation (26) which yields equations
(19) and (20) directly.

Three-dimensional wing.—The blockage corrcetion for a
three-dimensional wing in a cireular tunnel is given in refer-
ences 8, 9, and 10, the formula being of the same form as for
a body of revolution in a circular tunnel, namely, equation
(27) where 7 and Ay have values appropriate to the three-
dimensional wing. From reference 8 (using the notation of
reference 3 instead of reference 2) there is obtained

x 2gc?

Ay=g-—A (28)
4

Ty=—T (20)

Since also C=B7r"’/4 equation (27) yields at once
AT (25’ 2set A m‘m

MUT_ (T 2s¢0 A) <:€ T) v (fL’_’ R
U’ 8 7 x g OO T

This is the same as equation (7) which leads direetly to
equations (8) and (9) with the same definitions of A and
K, given in equations (11) and (12); = is, however, given by
equation (29) where 7y is obtained from references 8, 9, or 10.

Thus equations (8) and (9) may also be used for circular
tunnels provided only that the appropriate values of 7 are
used. Values of + are given in table I and figure 2. Values
of K; and K, are given in tables II and 111,

"SOLID BLOCKAGE IN COMPRESSIBLE FLOW

In the preceding section the solid-blockage corrections
have been determined under the assumption that {he fluid
is incompressible. It is now necessary to determine the
modifications required in these formulas to take sceount of
the effects of the compressibility of the fluid. The methods
of references 12 and 13 are very convenient for this purpose.
As the required modifications are given incorrectly in refer-
ences 5 and 6, partially incorrectly in reference 4, and
correctly in references 7, 8, 9, and 10, it appears worth while
to give some discussion of the matter.
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For the purpose of deducing the properties of 2 compressi-
ble flow from those of a corresponding incompressible flow
the so-called “Extension of the Prandt] Rule,” which was
first given in reference 12 and repeated as Method IV in
reference 13, is probably of most general application; but
the other methods of reference 13 are sometimes more con-
venient for certain problems. The Extension of the Prandtl
Rule may be expressed in the following manner:

The streamline pattern of a compressible flow to be cal-

culated can be compared with the streamline pattern of an

incompressible flow which results from the contraction of the .

y and z axes including the profile contour by the factor
1,/ 1—Af? (3f=ireestream Mach number) (x axis in the
direction of the free stream}. In the compressible flow the
pressure coefficient as well as the increase in the longitudinal
velocity are greater in the ratio 1/(I—1/% and the stream-
line slopes greater in the ratio l/\f 1—137 than those at the
corresponding points of the equivalent incompressible flow.

Since formulas (8) and (19} for the three-dimensional wing
and the body of revolution have the same form and also
apply to both rectangular and circular tunnels, it suffices to
determine the modification due to compressibility for them.
Let the subseript ¢ refer to compressible flow and the sub-
seript i to the corresponding incompressible flow. If 17, is
the volume of the model in the compressible flow, then 17,
the volume of the model in the correspondmg incompressible
flow, is given by

Ti=[1— QL7

where M’ is the apparent free-stream Mach number at the
model as determined from measurements taken af a point
far ahead of the model. Also if (. is the cross-sectional
area of the tunnel in the compressible flow, then (; the
cross-sectional area of the tunnel in the incompressible flow
is given by

C=[1—() Ce

7 is unaffected by the transformation and the effect on K,
and K, is sufficiently small that it may be neglected. From
the Extension of the Prandtl Rule it follows that

A[U’) 1 AIU") B
( Uur . 1=\ /i
1 EKxTh 1
1—( I 7

KjT 1',;
= [I—GDJE Car

where j denotes the numbers 1 or 3. Since equations (8)
and (@) are equivalent as are also equations (19) and (20),
it follows that in all cases it is only necessary to multiply
the blockage corrections given by these formulas by
[1—(347)2]"¥2 in order to take account of the compressibility
of the fluid.

As a check it is useful to determine the compressibility
modification for the case of & body of revolution in a circular
tunnel by Method II of reference 13, since the derivation
is so simple by this method. Both the body shape and
the Jongitudinal velocities are the same in the corresponding
compressible and incompressible flows; only the tunnel

dimensions are altered by the factor —\l 1—(M")? so that
Ci=[1—(M")%C,. There is obtained

AIU’)_ AUN Kl 1 Eyr V7,
_U' c_ 7 1_ 32 _[1_(3[')2]3/2 05312

as before.

WAEKE BLOCKAGE IN COMPRESSIBLE FLOW

The blockage due to the wake of a model in a two-dimen-
sional-flow tunnel is discussed in some detail in reference 3.
Mouch of this discussion is applicable without change to the
case of a three-dimensional flow tunnel. The fundamental

idea of replacing the model and its wake by a source (in this

case a three-dimensional source) of suitable strength located
at the position of the model can be used again and in faet the
determination of the source strength ¢ can be carried out in
exactly the same manner.
of reference 3, namely,

’U’C’ p'UCo'S

Q= (14 Gr—DALY] 30)

where e

@ mass flow of source rather than volume ﬂo“ as used

previously

¢’ mass density of fluid at point far upstream

Cp’ uncorrected drag coefficient referred to apparent dy-
namic pressure ¢’

S area on which drag coefficient is based

¥ ratio of specific heat of gas a2t constant pressure to

specific heat at constant volume (i—")

In equation (30) powers of M’ higher than (1/")? have been
neglected.

Consider now a rectagular tunnel of height H and breadth

B. The tunnel walls are replaced by a doubly infinite array
of sources of strength @ at distances mB to the side and nH
above and below the position of the model.

By making use of Method II of reference 13, it is readily
shown that a three-dimensional source of strength @ (mass
per unit time) in a uniform flow of compress 1ble fluid will
induce at the point the coordinates of which are x, 7, z rela-
tive to the source a streamwise velocity.

Au=

Q 3
dxp [+ (1— A2+ P2

where the uniform flow is in the r direction and p and 1f are
the density and Mach number, respectively, of the undis-
turbed stream.

It follows that the streamwise velocity A.T7 induced at a
point on the center line of the tunnel by the entire system
of images is

r

. Q<
MU' =7 2 A —OrAm B i pe

where p’ and 3" are the density and Mach number of the
undisturbed flow in the tunnel and the summation is taken

The result is identical with that

over all positive and negative integral values of m and n

except m=n=0. The velocity induced by the image
sources at an infinite distance upstream is

QU a=lim

Q ZI x .
4xp” = {2 +[1—-@L))(m*B*+n*H)}
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But conditions far upstream must remain unchanged and to
achieve this it is necessary to counterbalance this velocity
by superposition of a uniform flow of equal magnitude but
opposite sign. The addition of this flow at all points in the
field will result in a speeding up of the general flow at the
position of the airfoil by the amount

AU =lim

Q [ r
row 47p" 2 {2 +[1 (M) {(m*B*+-n?HA ¥ (31)

The summation of this series can be obtained by the following

artifice. Substitution of equation (30) into equatzon (31)
and setting M’ =0 gives
. (ST
AP
s )‘—lf'_.m 8x p24 x>+ szz—i—nzH’)S"" (32)
But according to references 4, 8, 9, and 10
AN 1 C'S
o)1 /(33)
Comparison of equations (32) and (33) shows ﬁhat-
27 - (34)

Q.TE (xz_}_szz_!_nsz)a/z BO

If in equation (34) B and H are replaced by V1—(3"* B

and +1—(B4")? H, respectively, there is obtained

Ii ‘ x 2%
im 2 TG W B (1= BH
(35)

Substitution of equations (35) and (30) into equation (31)
yields

1+ (y— 1) (M) C'S  1+0.4(M") Op'S

AU’
IBH - 1=(My  4C

0= 1—QG7p - 36)

on setting y=1.4. The preceding discussion is for a rectan-
gular tunnel, but in references 8, 9, and 10 the same formula
is given for a tunnel of any shape for the case A1'=0. Con-
sequently, equation (36) may be taken to hold generally for
a tunnel of any shape.

In reference 4 the wake-blockage correction is given cor-

rectly for incompressible flow but the modification to take.

account of compressibility is given incorrectly, as it is deter-
mined from reference 5 which, as pointed out in reference 13,
is incorrect. The effect of compressibility on the wake-
blockage correction is determined in references 8, 9, and 10
by means of the correct form of the Extension of the Prandtl
Rule but there is some question whether this rule is applica-
ble to this problem. It appears that in using this method
to determine the effect of compressibility on the blockage
correction, the effect of compressibility on the source strength
@ given by equation (30) is.qverlooked. This explains the
discrepancy between equation (36) and the formula of refer-
ences 8, 9, and 10.

WAKE PRESSURE GRADIENT IN COMPRESSIBLE FLOW

The effect of the pressure gradient caused by the wake is
discussed in reference 3 for compressible flow in a (wo-
dimensional wind_tunnel and in reference 11 for compressible
flow in 8 cireular wind tunnel. The method of reference 11
is equally applicable to the case of a rectangular wind tunnel
if the appropriate value of = (table I) is used.

The longitudinal velocity increment due to the effect of
the tunnel boundaries on the source used to simulate the
wake has an approximately linear gradien( in the s(ream
direction at the model location. This lincar gradient in the
velocity is equivalent to a linear gradient in the pressure as
is easily seen from the approximate relation.

AP'=_2Q' _U.i-

In reference 11 it is shown that the gradient in Al™ for a
source in a wind tunnel is identically equal to the value of
AU for a doublet in a wind tunnel. In the notation of
the present report there is obtained

(&) =-v 7%+

For compressible flow this becomes

dy__ 1Ha—D@ry [x Cy'S
dx. g n—GgE Va™ ¢on

g LEOSQLY [r 08
=GR Vi om

The increase in the drag resulting from this pressure
gradient is equal to the produet of the pressure gradient
by the sum of the actual model volume and the virtual
volume (reference 2). It should be noted that the constants
K, and Kj; of tables II and IV are equal to V(xl4) times
the ratio of the sum of the actual model volume and the
virtual volume to the actual model volume, these quantitics
being calculated under the assumption of incvmpressible
flow. Thus the increase in drag coefficient caused by the
pressure gradient is given by

140.4(A") Ky V0o

ACs, =t Ay (37)
for the wing, and
14+0.4(A") Kar V(0 ' .
= A Y

for the body of revolution.

It is pointed out in reference 11 that the virtdal volume is
altered by the compressibility of the fluid. Thus equations
(37).and (38) can be slightly improved if K; and K; appearing
therein are corrected to take account of this effect. The
necessary modification is made by replacing K, and K in
these equations by K, and K, respectively, where

K,,:Jg[wk(ﬂf’) (\/?;-K,—1)], j=1,3 (39
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3 | I .
FEA; I
|

n(M)
\

o = 2 2
MI

FinvRE +.—Linear compressibitity correetion factor for virtusl volume. From reference I1.

where & (') is given by figure 4 which is reproduced from
reference 11. It should be noted that the improvement in
modifying A; and K; for compressibility will be small es-
pecially in the case of K; for the body of revolution. It is
important only for quite high Mach numbers. This addi-
tional refinement was not made in reference 3.

It appears that a similar compressibility modification of
K, and K in the formulas for the solid blockage should he
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made, but the exaet modification required is not known.
However, 1t is believed to be small.

CORRECTION OF MEASURED QUANTITIES

The true velocity L7 at a model consisting of a body of
revolution and wing can be obtained from the apparent
velocity U’ by applying the solid-blockage and wake-
blockage corrections. The true velocity may be written in
the form

U=U(1+K)
K=Kw+Kb_:'Kwk

. (4£0)
where
(41)

In equation (38) K, is the solid-blockage correction due to
the wing and is given by :

1 KT, o
Kw—[l_(ﬂfl)zlan g;fz (42)_

or
X, 1 Kor2scuty (43)

=[1 —Qype Cf:m.

K, is the solid-blockage correction due to the body of
revolution, being given by

K= r—qiry o (44
or

K":[l —(if')ﬂ]m Kgsif"z -(45)
K, is the wake-blockage correction and is given by

K, _ 140402 'S (46)

1—r)y?  acC

It is evident that a correction to the apparent velocity in
a compressible flow implies corrections also to the apparent
density, .dynamic pressure, Revnolds number, and Mach

TABLE VI..—COMPRESSIBILITY FACTORS FOR CORRECTION EQUATIONS

g |9
o 19|
g 1y |2
3 = =
S| e jeq
ad a3 rae — — "
5 I E | | 22159 s | s
=3 =] - N ] -4 -t - C
| T SR I P Rl B =~ 3 | 3
™~ -] ~ I~ ] ] ~— o
. ~3 2 a 2 ol LA 3 3 a S = 3 5 ]
% A LA L < S S A [ ST T A A+
-
0. 200 1042 1063 2,03 1.033 1.072 1.058 2.074 1029 1.067 0. 0400 1.960 0.9720 L1008
.300 1.099 L 152 2. 200 1070 1173 1.138 2.174 1. 067 1.158 . 0900 1.910 . 9370 1.018
- 400 1,191 1.299 2.390 1154 1.341 L 267 2.331 1125 1.307 L1600 |.1.840 . &SSO 1.032
. 800 1333 L.540 2604 L270 L1617 L 467 2, 566 1.210 50 . 2500 L7560 . 8250 1. 050
. 550 L. 434 1717 2914 1.333 1.821 1.607 2.728 1.267 L. 705 3025 1638 . 7882 1060
. 600 1.563 1.953 3.203 L 461 2.094 1.788 2 931 1.837 1,916 . 3600 L.640 . 7480 1072
.625 L&8 2.102 3.383 1.527 2. 266 1897 3.054 1.37¢ 2.046 .3906 1.609 . 7266 1.038
650 1.732 2.279 3.595 1.605 2,471 2.024 3.193 L426 4 2185 .4225 L 578 < T042 1084
675 1.837 2.489 3.845 1.696 2.716 2.172 3.354 1. 479 2.369 . 4556 1. 544 .6811 1091
700 1.961 2.746 4.146 1.804 3.015 2.345 3.541 1. 541 2. 575 . 4900 1. 510 .65:0 1038
. 725 2.108 3.061 4.513 1.835 3.382 2. 551 3,761 1613 2.819 . 5256 1.474 6321 1105
. 750 2 286 3. 456 4. 968 2.095 3.845 2.800 4. 025 1667 3.115 . 5625 1. 438 . 6062 1.112
i 2. 504 3.962 5. 545 2.287 £ 438 3.105 4346 1.800 3.473 . 6006 1.399 . 5786 1.120
800 2.778 4. 630 6. 206 2. 556 5.222 3. 489 4. 745 1928 3.936 -6400 1.360 . 5520 L1128
.820 3. 052 5.333 7.080 2.823 8. 050 3.874 §.142 2050 4.395 6724 1328 . 5293 1.134
-840 3.397 6. 260 8.103 3:168 7.143 4.355 5.637 2.204 4. 970 . 7056 1.204 . 5061 1,141
. 860 3.840 7.526 G. 486 3.630 8.639 4.976 6. 272 2. 400 5712 . 7396 1.260 -4523 L1488
. 880 4 433 9.333 IL 44 4.273 10.78 5.806 7.116 2.659 6. 705 T4 1.226 4579 1.155
- 900 5.283 12.08 1437 5229 14.03 6. 968 8.282 3.018 8.408 8100 1.190 -4330 1.162
910 5.817 1403 16. 44 5.897 16.36 T. 744 $.076 3.255 9. 026 8281 1.172 .4203 1. 166
820 6. 510 16.62 19.16 6. 770 10.43 8.715 10.05 3.552 10.19 8464 1.154¢ 4075 1.169
930 7.402 20.14 | 22.86 7946 23.62 9.963 1131 3.931 1169 9 1.135 345 1173
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number. These corrections are readily obtained on the
basis of the usual assumption that the flow is adiabatic. _ It
is assumed that the correction terms are small compared
with unity, so that squares and products of these terms may
be neglected. The analysis follows the lines of reference 3,

and it is not necessary to repeat the details here. The fol-
lowing equations are obtained:
p=p"[1—(M'VK] = (47) -
=g/ {1+2— (MK} @)
R=R"{1+4[1—0.7(M"%K} (49)
M=M'{1+[14+0.2(3")K} (50)

The drag coefficient must be corrected for the effect of the .

pressure gradient due to the wake as well as to refer it to the
correct dynamic pressure. There is thus obtained

Cp=Cp'{1—-[2—(M'VIK}—ACp '—ACy,  (51)
where AC'p ’ and ACp,” are given by equations (37) and (38).

Numerical values of the functions of A" which appear in
these equations are given in table VI. '

CONCLUDING REMARKS

Data obtained from tests of three-dimensional models,
which are small relative to the wind-tunnel dimensions, can
be corrected for solid and wake blockage and for the pressure
gradient due to the wake by means of the following equations:

U=U'(1+K) ' (40)
g=g'{1+[2—(BLYIK} . @s8)
R=R'{14[1—0.7(M"?K} (49)
M=M{1+[1+0.2(M"IK) (50)

Co=Cp'{1—[2— (MK} —ACs,'—ACp,!  (51)

In the preceding equations K is obtained from the following:

K=Eot Kot Ko ay
where : -
1 KtV
Ke=ri—tarym oo -2
or

1 KgT 280wtw

Ke=r—arym ™~ o

-(43)

or
KFﬁt(ﬁ‘pﬁaﬁ A Q@T'a%ib—’ (45)
RLMODGS g
LT R
s/ s 69

In these equations 7 is a factor which for a body of revolu-
tion depends only on the shape of the tunnel; whereas for a
three-dimensional wing = depends on the ratio of the wing
span to the tunnel breadth as well as on the tunnel shape.
(The wing span is in_the direction of the tunnel breadth.)
Values of 7 are given in table I and figure 2.  The constants
K, and K for the three-dimensional wing depend only on
the wing base profile shape and can be caleulated by means
of equations (11), (12), and (13). Values of K, and K, for
a number of wing profiles are given in tables II and IIL
The constants K3 and K, for the body of revolution depend
only on the shape of the body and can be ealeulated by means
of equations (22), (23), and (24). Values of these constants
for a number of body shapes are given in tables IV and V;
some of these shapes are drawn in figure 3. Since (hese
tables are incomplete and fuselage forms are not standard-
ized as are wing sections, it is recommended that the values
of K; given in table IV for the NACA 111 series of shapes
be used for any fuselage shape which does not differ oo
greatly from an NACA 111 shape. This implies that equa-
tion (19) and table IV should be used in preference to equa-
tion (20) and table V whenever possible. Numerical values
of the functions of 31" which appesar in the correction cqua-
tions are given in table VI.

The constants K; and Kj appearing in equations (37) and
(38) may be modified for compressibility by means of figure
4. The modified values of K; and K; are to be used in
equations (37) and (38).only and not in equations (42) and
(44). .

AMEs AERONAUTICAL LABORATORY,
Natronan Apvisory COMMITTEE FOR AERONAUTICS,
Morrer Fiewp, CaLir.



APPENDIX A
SUMMATION OF THE INFINITE SERIES FOR (0, /B, B/H)

From equations (3) and (16) it is seen that ¢(O, ¢/B, BfH) | where the summation is taken for all positive and negative
may be written in the alternative forms. integral values of m and n except m=n=0 and the quantities
En, and Fu,, which are introduced for convenience, are
s B ) 1 m+s/B_m—siB defined by the equations |
(03 7)== w("F F (A1) : -
- = Epn=~""F G+ 5] BB
or Frw=+n?*+(m—s/B)B/H)?
9 It is possible to sum the series for «(0, s/B, B/H) etactly
5 , m
o (0’ B H =23 E,“,F,,,.[(m+s[B)F,,.,.+(m—s/B)E,,.,] only when s{B—— In this case equations (Al) and (A2)
(A2) | yield
1 1
1 By &1 & m+3 m—3 - m
= (0 2’ H,)_2 2 z 12 2 = 1/4)*(B/H)*

2 (m -I-—l?:)

n2+( m _{_%)’ (B/H)? \/ n*-[-(né _%, (B/HY*

1

)
B/H El n’+(B/H)3=B/I—I [ 6 T (B

3 + 32 : : 2 - 2
o+ (mt) @iy iy l:(.m‘%) (\”‘“L%)}

For other values of s/B it is necessary to sum the series numerically. The series may be rewritten

x 1

s B\ & & m
(0 3 1)~ 5 B Er TR T B nﬂ.‘mT(B/H)SE remtE (0 3 g

where IV is an arbitrary positive integer and Ry (0, s/B, B/H)
denotes a remainder term. In evaluating (0, /B, B/H) in
the present report, NV was usually taken equal to 7 and the
summations indicated in equation (A3) were carried out ex-

R('o B

(,A3)

actly; whereas an approximate value was used for the re-
mainder term. An approximate formula for Ry (0, s/B, B/H)
is

N (N+3) +14

bdlf'J

yz9), )=+4

(BIEDy (N+1) (N-{—l

2\ EEam+(N+3)

V(B/H)*+1

BB gy v+ L)

(BJEL)? (_N+%)

@i (v+3)

(A4)

It will now be shown how formula (A4} is obtained. It is easily verified that

1 v(B/H)*a*1-b*

[‘ © dy ° dx .
Jo Ve WPHBET? (B/H) ' (B/H)e

[re L
s B 2a?

and that

BlEYab “

(A8)
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provided e, b>0. Now Ry(0, s/B, B/H) is approximately
equal to Ry(0,0, B/H) and it is easily found that

I{N(O:O)B/H)=4‘(.i i + ﬁ‘: ZN))?W%B/—I__;)—W—P

=l m=N+4+1 n=N+1 1

21 2 1
2 T BIER niin

n=N+1 =N+1

These summations may be app:ommatc.d by suitable inte-
grals so that approximately.

RN(O,%: 4(1 dyJ dx—i—J dy[ dz—

N+

o Yoo h 1
fmg ‘Z”JM;’ *)

® r/.r

-2 [1 +(BIII)“] ] s (A7
2

If the integrals of equation (A7) are evaluated by means of
equations (A5) and (A6), then equation (A4) is obtained.



APPENDIX B

LIST OF IMPORTANT SYMBOLS

B tunnel breadth or diameter

H tunnel height

A tunnel cross-sectional area

¢ chord of airfoil or body of revolution

t maximum thickness of airfoil or body of revolution

1% volume of wing or body of revolution

S maximum cross-sectional area of body of revolu-
tion

8 half span of wing

(s drag coefficient ’

S model area on which drag coefficient is based

U stream velocity

M Mach number

R Reynolds number

¥ ratio of specific heat of gas at constant pressure to
specific heat at constant volume (c,/e,)

g mass density

q > dynamic pressure

A, K, K, factors depending on shape of airfoil base profile
(See equations (11}, (12), and (13) and tables
IT and IIT.)

N\, K, K, factors depending on shape of body of revolution
(See equations (22), (23), and (24) and tables
IV and V.)

R(ALY linear compressibility correction factor for virtual
volume (reference 11)

T factor depending on tunnel shape and wing-span-
to-tunnel-breadth ratio (See equations (10) and
(21} and table 1.)

K total blockage correction (See equation (41).)

K, wing-blockage correction (See equations (42) and
(43).)

y ¢ body-blockage correction (See equations (44) and
(45).)

Ko wake-blockage correction (See equation (46).)

Superseript: )

@) when pertaining to fluid properties, denotes values

existing in tunnel far upstream from model;
when pertaining to airfoil characteristics, denotes
values in tunnel, coefficients being referred to
apparent dynamic pressure ¢’

Subseripts: :

¢
1
w
b

wk

10.

11.

12,
13.

14,

(Used only when necessary to avoid ambiguity)
denotes values in compressible fluid
denotes values in incompressible fluid
denotes values for wing
denotes values for body of revolution

denotes values for wake.
<
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